89 research outputs found

    Turning an organic semiconductor into a low-resistance material by ion implantation

    Get PDF
    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performanc

    Exploring Coral Calcification by Calcium Carbonate Overgrowth Experiments

    Get PDF
    The Scleractinia coral biomineralization process is a representative example of a heterogeneous process of nudeation and growth of biogenic CaCO3 over a mineral phase. Indeed, even if the biomineralization process starts before settlement, the bulk formation of the skeleton takes place only when the larvae attach to a solid substrate, which can be Mg-calcite from coralline algae, and the following growth proceeds on the Mg-calcite surface of the formed baseplate of the planula. Despite this peculiarity and central role of the Mg-calcite substrate, the in vitro overgrowth of CaCO3 on single crystals of Mg-calcite, or calcite, in the presence of magnesium ions and the soluble organic matrix (SOM) extracted from coral skeletons has not been performed until now. In this study, the SOMs from Stylophora pistillata and Oculina patagonica skeletons were used in a set of overgrowth experiments. The overgrown CaCO3 was characterized by microscopic, diffractometric, and spectroscopic techniques. Our results showed that CaCO3 overgrowth in the presence of S. pistillata or O. patagonica SOM produces different effects. However, there appears to be a minor distinction between samples when magnesium ions are present in solution. Moreover, the Mg-calcite substrate appears to be a favorable substrate for the overgrowth of aragonite, differently from calcite. These observations fit with the observed settling of coral larvae on Mg-calcite-based substrates and with the in vivo observation that in the planula aragonite forms on first-formed Mg-calcite crystals. The overall results of this study highlight the importance of magnesium ions, either in the solution or in the substrate, in defining the shape, morphology, and polymorphism of biodeposited CaCO3. They also suggest a magnesium-dependent biological control on the deposition of coral skeletons

    Surface nanostructures in manganite films

    Get PDF
    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications

    X-Ray-Induced Modification of the Photophysical Properties of MAPbBr3Single Crystals

    Get PDF
    Methylammonium lead tribromide (MAPbBr3) perovskite single crystals demonstrate to be excellent direct X-ray and gamma-ray detectors with outstanding sensitivity and low limit of detection. Despite this, thorough studies on the photophysical effects of exposure to high doses of ionizing radiation on this material are still lacking. In this work, we present our findings regarding the effects of controlled X-ray irradiation on the optoelectronic properties of MAPbBr3 single crystals. Irradiation is carried out in air with an imaging X-ray tube, simulating real-life application in a medical facility. By means of surface photovoltage spectroscopy, we find that X-ray exposure quenches free excitons in the material and introduces new bound excitonic species. Despite this drastic effect, the crystals recover after 1 week of storage in dark and low humidity conditions. By means of X-ray photoelectron spectroscopy, we find that the origin of the new bound excitonic species is the formation of bromine vacancies, leading to local changes in the dielectric response of the material. The recovery effect is attributed to vacancy filling by atmospheric oxygen and water

    Association of Carotid Plaque Morphology and Glycemic and Lipid Parameters in the Northern Manhattan Study

    Get PDF
    Low Gray-Scale Median (GSM) index is an ultrasonographic parameter of soft, lipid rich plaque morphology that has been associated with stroke and cardiovascular disease (CVD). We sought to explore the contribution of the modifiable and not-modifiable cardiovascular risk factors (RFs) to vulnerable plaque morphology measured by the low GSM index. A total of 1,030 stroke-free community dwelling individuals with carotid plaques present (mean age, 71.8 ± 9.1; 58% women; 56% Hispanic, 20% Non-Hispanic Black, 22% Non-Hispanic White) were assessed for minimum GSM (min GSM) using high-resolution B-mode carotid ultrasound. Multiple linear regression models were used to evaluate the association between RFs and minGSM after adjusting for sociodemographic characteristics. Within an individual, median plaque number was 2 (IQR: 1–3) and mean plaque number 2.3 (SD: 1.4). Mean minGSM was 78.4 ± 28.7 (IQR: 56–96), 76.3 ± 28.8 in men and 80 ± 28.5 in women; 78.7 ± 29.3 in Hispanics participants, 78.5 ± 27.2 in Non-Hispanic Black participants, and 78.2 ± 29 in Non-Hispanic white participants. In multivariable adjusted model, male sex (ÎČ = −5.78, p = 0.007), obesity BMI (ÎČ = −6.92, p = 0.01), and greater levels of fasting glucose (ÎČ = −8.02, p = 0.02) and LDL dyslipidemia (ÎČ = −6.64, p = 0.005) were positively associated with lower minGSM, while presence of glucose lowering medication resulted in a significant inverse association (ÎČ = 7.68, p = 0.04). Interaction (with p for interaction <0.1) and stratification analyses showed that effect of age on minGSM was stronger in men (ÎČ = −0.44, p = 0.03) than in women (ÎČ = −0.20, p = 0.18), and in individuals not taking glucose lowering medication (ÎČ = −0.33, p = 0.009). Our study has demonstrated an important contribution of glycemic and lipid metabolism to vulnerable, low density or echolucent plaque morphology, especially among men and suggested that use of glucose lowering medication was associated with more fibrose-stable plaque phenotype (greater GSM). Further research is needed to evaluate effects of medical therapies in individuals with vulnerable, low density, non-stenotic carotid plaques and how these effects translate to prevention of cerebrovascular disease

    Substitutional doping of hybrid organic-inorganic perovskite crystals for thermoelectrics

    Get PDF
    Hybrid organic–inorganic perovskites have generated considerable research interest in the field of optoelectronic devices. However, there have been significantly fewer reports of their thermoelectric properties despite some promising early results. In this article, we investigate the thermoelectric properties of bismuth-doped CH3NH3PbBr3 (MAPbBr3) single crystals. The high-quality Bi-doped crystals were synthesized by inverse temperature crystallization and it was found that Bi substitutes onto the B-site of the ABX3 perovskite lattice of MAPbBr3 crystals with very little distortion of the crystal structure. Bi doping does not significantly alter the thermal conductivity but dramatically enhances the electrical conductivity of MAPbBr3, increasing the charge carrier density by more than three orders of magnitude. We obtained a negative Seebeck coefficient of −378 ÎŒV K−1 for 15% (x = 0.15) Bi-doped MAPb(1−x)BixBr3 confirming n-type doping and also measured the figure of merit, ZT. This work highlights routes towards controlled substitutional doping of halide perovskites to optimise them for thermoelectric applications

    Structure and dynamics of pentacene on SiO2: From monolayer to bulk structure

    Get PDF
    We have used confocal micro Raman spectroscopy, atomic force microscopy (AFM), and x-ray diffraction (XRD) to investigate pentacene films obtained by vacuum deposition on SiO2 substrates. These methods allow us to follow the evolution of lattice structure, vibrational dynamics, and crystal morphology during the growth from monolayer, to TF, and, finally, to bulk crystal. The Raman measurements, supported by the AFM and XRD data, indicate that the film morphology depends on the deposition rate. High deposition rates yield two-dimensional nucleation and quasi-layer-by-layer growth of the T-F form only. Low rates yield three-dimensional nucleation and growth, with phase mixing occurring in sufficiently thick films, where the T-F form is accompanied by the "high-temperature" bulk phase. Our general findings are consistent with those of previous work. However, the Raman measurements, supported by lattice dynamics calculations, provide additional insight into the nature of the TFs, showing that their characteristic spectra originate from a loss of dynamical correlation between adjacent layers

    Transmission Electron Microscopy, High Resolution X-Ray Diffraction and Rutherford Backscattering Study of Strain Release in InGaAs/GaAs Buffer Layers

    Get PDF
    Strain release and dislocation distribution in InGaAs/GaAs double heterostructures, step-graded and linear-graded buffer layers have been studied. A higher misfit dislocation density at the inner interface between the InGaAs layer and the substrate was found in all the samples. This corresponded to a strain release of the inner ternary layers much larger than predicted by equilibrium theories. The residual parallel strain of the external layers as a function of their thickness was found to follow a curve approximately of slope -0.5, in agreement with previous investigations on single InGaAs layers. This result has been interpreted as evidence that the elastic energy per unit interface area remains constant during the epilayer growth. The presence of numerous single and multiple dislocation loops inside the substrate was attributed to the strain relaxation occurring through dislocation multiplication via Frank-Read sources activated during the growth. A comparison with InGaAs/GaAs step-graded and linear-graded heterostructures is also shown and briefly discussed. Finally, lattice plane tilts between epilayers and substrates have been found due to the imbalance in the linear density of misfit dislocations with opposite component of the Burgers vector, b⊄eff, perpendicular to the interface

    Polymorphism in N,Nâ€Č-dialkyl-naphthalene diimides

    Get PDF
    The long-known class of compounds called naphthalene diimides (NDI), bearing alkyl subtituents on the imide nitrogen atoms, have been widely used as active materials in thin film devices with interesting optical, sensing and electrical applications. Less is known about their rich crystal chemical behaviour, which comprises numerous polymorphic transitions, and the occurrence of elusive liquid crystalline phases. It is this behaviour which determines the response of the devices based on them. Here we fully characterized, by combining a combination of differential scanning calorimetry, powder and thin film diffraction and optical microscopy techniques, two newly synthetized NDI materials bearing n-octyl and n-decyl side-chains, as well as lighter analogues, of known room temperature crystal structures. In search for a rationale of their physico-chemical properties, phase stability and thermally induced solid-state transition reversibility, the differential behaviour of these NDI materials is here interpreted based on the competitive role of intermolecular pi-pi interactions and of the alkyl chains flexibility. The occurrence of comparable local minima of the molecular conformational energy hypersurface for shorter alkyls, and, for longer ones, of rotator phases, is here invoked

    Abstract OR-3: Integrative Structural Study of the Complex of Snake Toxin WTX with α7-type Nicotinic Acetylcholine Receptor

    Get PDF
    Background: Nicotinic acetylcholine receptors are ligand-gated ion channels present in the nervous system, epithelium, and the immune system. The α7-type nicotinic receptor (α7-nAChR) is a homopentameric membrane protein containing five ligand binding sites located at the interface between subunits in the extracellular domain of the receptor. α7-nAChR is considered a promising target for the treatment of cancer and cognitive dysfunction in Alzheimer's disease, schizophrenia, and depression. WTX is a non-conventional three-finger neurotoxin from the Naja kaouthia venom inhibiting α7-nAChR. WTX structure consists of three loops protruding from the “head” (core) stabilized by a system of disulfide bonds. Methods: The complex of the α7-nAChR extracellular domain with a recombinant analogue of WTX was studied by cryo-electron microscopy. The structure of the complex of full-length α7-nAChR with the toxin in the membrane environment was reconstructed by in silico molecular modeling. Interaction of WTX with the lipid membrane was confirmed by NMR-spectroscopy. Results: Analysis of electronic images confirmed the homopentameric organization of the extracellular domain with a diameter of ~ 9 nm and a height of ~ 7 nm. On the electron density map, additional regions corresponding to five WTX molecules located at the intersubunit interfaces of the domain were observed. Fitting the known spatial structures of the extracellular domain and the WTX toxin into the obtained electron density made it possible to reconstruct the structure of the complex (although with a low resolution of ~ 8 Çș due to the predominant orientation of particles in the ice) and to determine the topology of the toxin-receptor interaction. It was revealed that WTX interacts with the extracellular domain of α7-nAChR by the loop II, while the loop I and the toxin’s head seem to interact with the surface of the lipid membrane surrounding the receptor. Model of the complex of the full-length α7-nAChR receptor with WTX in the membrane environment corresponding to the neuronal membrane was constructed using computer simulation methods. Molecular dynamics for >1500 ns confirmed the stability of the complex. The predicted membrane-active site of the WTX molecule includes residues Lys13 and Arg18. The study of WTX and its mutants Lys13Ala and Arg18Ala by NMR-spectroscopy confirmed the importance of these residues for interaction with lipid membrane. Conclusion: Interaction mode of non-conventional neurotoxins with nAChR has been determined for the first time
    • 

    corecore